
OPENCARAC USER MANUAL

Jonathan Certes

May 26, 2016

GFDL

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

Copyright

openCarac : Automatize your Spice simulator runnings
Copyright (C) 2014-2016 Jonathan Certes
jonathan.certes@online.fr
http://opencarac.sourceforge.net

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.←↩
gnu.org/licenses/.

This documentation has been generated by Doxygen (C):
Copyright (C) 1997-2015 by Dimitri van Heesch.
Permission to use, copy, modify, and distribute this software and its documentation under the terms of the GNU General
Public License is hereby granted. No representations are made about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.
See the GNU General Public License for more details.
Documents produced by doxygen are derivative works derived from the input used in their production ; they are not affected
by this license.

The documentation itself is released under the GNU Free Documentation License:
Copyright (C) 2014-2016 Jonathan Certes.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts.

Third-party software components

• TCL/TK is distributed under the terms of the BSD license.

• Doxygen is distributed under the terms of the GNU General Public License.

• Octave is distributed under the terms of the GNU General Public License.

• LaTeX is distributed under the terms of the LaTeX project public license.

• Ngspice is distributed under the terms of the modified BSD license.

• Gnucap is distributed under the terms of the GNU General Public License.

• Xyce is distributed under the terms of the GNU General Public License and other licenses.

• SMASH is a registered trademark of Dolphin Integration.

• Linux is distributed under the terms of the GNU General Public License and other licenses.

• Windows is a registered trademark of Microsoft.

All other trademarks are property of their respective owners.

1

This manual has been generated by Doxygen

mailto:jonathan.certes@online.fr
http://opencarac.sourceforge.net
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.doxygen.org/index.html

Contents

1 Introduction 4
1.1 Brief description . 4
1.2 openCarac output files . 4
1.3 Glossary . 5
1.4 FAQ . 6

1.4.1 Where does the name "openCarac" come from? . 6
1.4.2 Can openCarac be natively compatible with other Spice simulators? 6
1.4.3 Why openCarac has been coded with TCL? . 6
1.4.4 Does openCarac come with a Graphical User Interface . 6
1.4.5 Why is there a duck printed in my result files? . 6

2 Your first carac 7
2.1 Add openCarac to your environment . 7

2.1.1 Run openCarac: . 7
2.1.2 Define your simulation environment . 8

2.2 Organize your Spice circuit files . 9
2.3 Run a carac . 11

3 Execution details 12
3.1 Overview . 12
3.2 Native functions . 12

3.2.1 Archives creation . 13
3.2.2 Full summary creation . 13

3.3 In batch mode . 13
3.4 Through the graphical user interface . 13

4 Files alteration 14
4.1 Overview . 14
4.2 Creation of temporary folders . 14

4.2.1 Simulator files syntax . 15
4.3 Substitution after a marker . 15
4.4 Replacing netlist inclusion . 15
4.5 Substitution of parameters . 15
4.6 Add parameters settings . 15
4.7 Comment of possible inclusions . 16
4.8 Check mode . 16

5 Simulator specificities 17
5.1 Execution of the simulator . 17
5.2 Saving the results . 18
5.3 Gnucap files parser . 18
5.4 Ngspice files parser . 18
5.5 Xyce files parser . 19
5.6 Smash files parser . 20
5.7 User defined command . 21

2

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6 openCarac usage 22
6.1 Environment file syntax . 22

6.1.1 Section application . 22
6.1.2 Simulators sections . 24

6.2 Execution options . 26
6.3 Configuration file syntax . 28

6.3.1 Global arrangement . 29
6.3.2 .CARAC directive . 29
6.3.3 .CHANGE directive . 30
6.3.4 .CHECKMEAS directive . 30
6.3.5 .CHECKOP . 31
6.3.6 .CORNER directive . 31
6.3.7 .CUSTOMARGS directive . 32
6.3.8 .EXTRACTOP directive . 32
6.3.9 .LIBPARAMLIN directive . 33
6.3.10 .LIBPARAMWIN directive . 34
6.3.11 .LINLIBPARAM directive . 34
6.3.12 .LINMODEL directive . 35
6.3.13 .MODELLIN directive . 35
6.3.14 .MODELWIN directive . 35
6.3.15 .NETLIST directive . 36
6.3.16 .PARAM directive . 37
6.3.17 .PARAMETERS directive . 37
6.3.18 .RESET directive . 37
6.3.19 .SIMU directive . 38
6.3.20 .SIMULATIONS directive . 39
6.3.21 .SIMULATOR directive . 39
6.3.22 .WINLIBPARAM directive . 40
6.3.23 .WINMODEL directive . 40

7 Expert mode 41
7.1 Use of a custom simulator . 41
7.2 Custom procedure . 41
7.3 Hooks . 42

3

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

Chapter 1

Introduction

Abstract: Welcome to openCarac user manual. This document’s purpose is to introduce the tool that is openCarac and
explain how to use it in order to automatize your Spice simulator runnings. Assumption is made that the reader already has
basic knowledges about circuit simulation using Spice. Section Brief description gives an overview of openCarac, section
openCarac output files lists the output files, section Glossary defines the openCarac specific vocabulary and frequently
asked question are answered in section FAQ.

openCarac is a work in progress; reports about bugs, missing items, wrongly described items, bad English style are
deeply appreciated.

1.1 Brief description

In electronics, a designer who creates a circuit has to verify its functionality by performing various simulations such as
distortion measurement, noise calculation, stability evaluation and so on ; if he wants to test his circuit’s robustness,
devices corners (typical, slow, fast, etc.) should vary and simulation conditions such as temperature, power supply voltage
or bias current must be tuned. When crossing all those conditions, it results a huge amount of simulations to run that can
be difficult to handle ; also, Spice simulators generate formated results files that are not always easy to treat or summarize
and getting useful informations out them can be difficult.

This is when openCarac could be useful ; this tool has been implemented to automatize tasks by running the user’s
favorite Spice simulator in predefined conditions. The user only has to create a configuration file in a simulation environment
organized to this purpose and run openCarac in order to make all his simulations run and have his data summarized in a
results folder.

Indeed, by using openCarac, the designer will be in possession of easily exploitable files to treat his data and create
quality document out of them as described in section openCarac output files.

Note: Since many Spice simulator exist and do not accept the same syntax, give the results files in the same format,
a choice had to be made to make openCarac compatible with some of them. As a consequence, openCarac is not
natively compatible with every Spice simulators. Nevertheless, an API permits to add other features and extend openCarac
compatibility.

1.2 openCarac output files

When simulating using a Spice simulator, the designer usually extracts data values out of his work using a .MEAS or
.MEASURE directive1. It permits the user to access a value of what he wants to measure. This is the kind of data
openCarac focuses on: this tool is used to save and organize what is given by the simulator. Indeed, after having executed
the simulator, openCarac parses the results files and creates its own output files by summarizing what it has found.

In these results files, one can find the following formats:

• Tables in HTML format: navigate easily through your simulation results using hyper-links in a web browser.
1Such a directive may vary from a simulator to an other

4

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

• LATEX code files: make quality documents with your results saved in tables.

• GNU Octave T M script files: treat your data easily by calculating anything with your results saved into matrices.

1.3 Glossary

In this documentation, some openCarac specific vocabulary is used, this section gives a definition for each word:

application refers to the openCarac application: when global settings are altered, this affects all the openCarac application
behaviour.

configuration refers to a directory where various caracs can be run: there must be only one main file, various simulation
and netlist files in the directory root. When calling the Spice simulator for a running, a temporary folder is created at the
same hierarchy level as the configuration directory.

carac refers to a group of simulations loading the same "model" file and the same "libparam" file and having the same
specifications. A carac is defined between two .CARAC or .CHANGE directives in a configuration file. See subsection
.CARAC directive for more informations.

simulation refers to a group of runnings depending on the same simulation file to be included in the main file. A simulation
is defined through a .SIMU directive if in a configuration file. See subsection .SIMU directive for more informations.

running refers to one execution of the Spice simulator in a temporary folder. A running is defined for each cor-
ner/param/netlist tuple available in a carac for each available simulation.

results extraction refers to the access of every saved measure for each running, it usually comes with the creation of
HTML, LATEX and GNU Octave T M files.

openCarac main executable refers to the openCarac.tcl file that is available with openCarac, it uses openCarac API
functions to form a stand-alone program.

main file refers to the file containing MODEL, PARAM and SIMU markers; it must be unique in each configuration. In this
file are substituted model and libparam loadings, so as netlist and simulation files inclusions.

model refers to the file that must be loaded after the MODEL marker in the main file, its path can be defined through a
.MODELLIN or .MODELWIN directive in the configuration file.

libparam refers to the file that must be loaded after the PARAM marker in the main file, its path can be defined through a
.LIBPARAMLIN or .LIBPARAMWIN directive in the configuration file.

corner refers to the library to load in the model file when substituting in the main file.

param refers to the library to load in the libparam file when substituting in the main file.

netlist refers to the separated file to be included in the main file, it can be identified by openCarac through its extension.

5

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

1.4 FAQ

1.4.1 Where does the name "openCarac" come from?

Since openCarac is a tool to simulate an electronic circuit in various conditions, it is used to characterize it; so, I, being
French, have chosen this name as follows:

The "carac" suffix comes from the French word caractérisation, meaning "characterization".
Of course, the prefix "open" has been added since it is an open-source project.

1.4.2 Can openCarac be natively compatible with other Spice simulators?

There are many available Spice simulators and being natively compatible with all of them represents a huge amount of
work: they all accept a different syntax for their directives and output files formats are always different. So, adapting open←↩
Carac to the most popular simulators is the goal that has been fixed but, this project being a work-in-progress, we will have
to wait a little to see it compatible with other simulators.

Nevertheless, even if your favourite simulator is not natively compatible with openCarac, a custom command with its
syntax can be defined to automatize the runnings anyway. The openCarac API functions also permit to incorporate your
own output files parsers into the execution and have the results treated as wanted.

1.4.3 Why openCarac has been coded with TCL?

The main reason openCarac has been coded in TCL (tool command language) is because it is the language I wanted to
learn.

This language being mainly used to command simulators using their API (application programming interface), it can
easily be integrated to their environment. Also, since TCL is a script language that does not need to be compiled, execution
of an external simulator becomes even easier ; so does the execution of openCarac from the TCL interpreter of the same
simulator.

1.4.4 Does openCarac come with a Graphical User Interface

The simplest answer is "not yet". Adding a GUI is the next step in openCarac development, it should be available soon.

1.4.5 Why is there a duck printed in my result files?

I believe that duck is the most beautiful animal I ever saw and I wanted to share my passion with any potential user. Adding
a lemon could also be a nice touch.

6

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

Chapter 2

Your first carac

Abstract: In order to use openCarac, the user has to adapt his environment to make it compatible with. Since this instal-
lation requires a little comprehension of how the tool works, this chapter describes the steps to prepare your environment
to welcome openCarac: section Add openCarac to your environment details how to configure the execution of your favorite
simulator through openCarac ; section Organize your Spice circuit files shows how to write your Spice files in order to
welcome openCarac and section Run a carac explains how to have your first carac working.
Note that openCarac is highly configurable and this chapter aims to provide an overview of how to use it. As a consequence,
assumption is made that openCarac environment settings are set to default in the whole chapter. More informations about
the execution are given in chapter openCarac usage.

2.1 Add openCarac to your environment

First, know that openCarac is a cross-platform1 TCL script that automatizes the execution of a Spice simulator. Then, it
must be executed through a TCL interpreter and a compatible Spice simulator must be available.

So, before being able to run openCarac, make sure that a TCL interpreter is available (openCarac works fine with
version 8.5) and so is a Spice simulator present in the following list:

• Ngspice T M (tested with version 26)

• Gnucap T M (tested with version 2009.12.07)

• Xyce T M (tested with version 6.2)

• Dolphin Integration SMASH T M (tested with version 6.0)

2.1.1 Run openCarac:

Basically, as any TCL script, openCarac must be executed through a TCL interpreter, then you must know the command
to execute it. We suggest that you run your interpreter from your command line interface, because when openCarac
terminates, TCL command "exit" is executed and TCL interpreter quits; if it has been executed from a command line
interface, only the interpreter does and previously printed text remains visible.

Since openCarac is not only a program but also a TCL package, there are various ways to execute it ; to make its use
easier, it comes with a main executable named openCarac.tcl in the source folder. Executing the openCarac program
is done through this main executable.

So, execute the command to run your TCL interpreter followed by the path to access openCarac main executable. This
may look like one of the following commands.
If you are using a Unix like OS:

1openCarac has been tested under both Linux and Windows.

7

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

tclsh ~/openCarac/src/openCarac.tcl

If you are using Windows:

C:\tcl\bin\tclsh.exe C:\openCarac\src\openCarac.tcl

If you have an error message from your command line interface, make sure that both TCL interpreter command and
openCarac script path are correct.

Otherwise, you can see the copyrights printed in your command line interface, this means that the execution has
occurred correctly, even if you see an error message printed by openCarac : this only means that guidelines must be
followed to ensure a perfect execution sequence.

2.1.2 Define your simulation environment

Congratulations, your are now able to run openCarac. But you may wonder how does it know how to execute your simula-
tor? The answer is simple: it does not. So, openCarac is not yet integrated to your environment: you must then tell it what
is the command and its options to execute your favorite simulator the way you want.

To do so, just give the argument to your TCL interpreter to make openCarac create a environment file, adapt and
execute the following command. In case you are executing openCarac through a TCL interpreter different from tclsh, you
can set your argument by setting the variable argv to "--configure". See section Execution options for more informations.
If you are using a Unix like OS:

tclsh ~/openCarac/src/openCarac.tcl --configure

If you are using Windows:

C:\tcl\bin\tclsh.exe C:\openCarac\src\openCarac.tcl --configure

As a consequence, openCarac will create a folder named .openCarac and an environment file into your user home
directory, which you can modify to adapt openCarac application settings to your environment. A message should be printed
giving the location of this file.

Note that another file, customProcedures.tcl, has also been created, its usage is for experts with TCL language
and is described in chapter Expert mode.
In this environment file are described the settings of openCarac: parameters are defined and set to particular value,
comments are also present starting with an hash (#). Now, just open this environment file with your favorite text editor, this
may look like something as follows:

8

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

[application]

modelMarker = **MODEL**
paramMarker = **PARAM**
simuMarker = **SIMU**

filesExtensionFilter = .sp .cir .spi .ckt
simulationFileExtension = .inc
netlistFileExtension = .nsx

some other settings here

[ngspice]

command = ngspice

checkOptions = --batch
runOptions = --batch --autorun

saveFilter = .raw .data .ps .eps .plt .log
logExtension = .log

some other settings here
etc.

These are the definitions of the parameters to set openCarac environment: the parameters are separated in categories
having their name between brackets ; on each line, the name of the parameter is located between the beginning of the line
and the equal (=), its value is then defined between the same equal and the end of the line. You can modify them in order
to change the commands to execute the simulators. A detailed description of the file syntax is given in section Environment
file syntax.
So, in order to make openCarac compatible with your simulation environment, just change the values of the command to
execute the appropriate simulator ; i.e. the "command" parameter in the category having its name matching the simulator’s.
Here is an example of a environment file to use openCarac under Windows2:

[application]

Default output log file:
logFile = ../myOpenCaracLogFile.txt

Default simulator:
simulator = ngspice

some other settings here

[ngspice]

command = C:\\Program\ Files\\spice\\bin\\ngspice.exe
checkOptions = --batch
runOptions = --batch --autorun

some other settings here
etc.

As soon as this environment file has been properly filled, it seems that openCarac has been added to your environment,
you are now ready to use it!

2.2 Organize your Spice circuit files

The purpose of openCarac is to automatize runnings using your simulator: when characterizing a circuit, the designer must
run various type of simulations such as AC, transient, noise... Also, he might tune simulation parameters: bias current,

2Note that, when defining a path, you must use escape syntax for backslashes or space characters.

9

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

power supply voltage, temperature... He may make his components corners vary too: slow, fast, best, worst, whatever the
definition is.

So, openCarac provides a way to run every needed simulations in the previously designed conditions. In order to do
so, the user must organize his Spice files to make them fully compatible with openCarac; a way to organize them has been
chosen and is described as follows:

• A main file contains inclusions of other files or loadings of libraries. openCarac can identify it when it contains
MODEL, PARAM and SIMU markers.

• Devices models are defined in only one file containing various libraries, openCarac identify this as the "model"; each
library contains the definitions of the devices, openCarac identifies this as a "corner".

• Simulation conditions are established into one only file containing various libraries, openCarac identify this as the
"libparam"; each library contains the definition of parameters, openCarac identifies this as a "param".

• Each simulation is defined into a separated file that must be included into the control file only once at the time. The
extension for simulation files must be unique.

• The circuit definition can be defined in a separated file as soon as there is a unique inclusion of a file with its extension
in the main file. openCarac identifies this as a "netlist".

In the previously defined control file, loadings of libraries in both model and libparam, so as inclusions of simulation files,
can be operated by openCarac at the location stipulated by markers. So, the user finally has to add these markers into his
control file and then, openCarac will use them to tune it for various runnings. Since comment character in Spice syntax is
usually the star (∗), it is highly recommended to choose these marker starting with a star. By default in openCarac, these
markers are:

• ∗∗MODEL∗∗ : marker to explicit the location where to change the corner loading in the model.

• ∗∗PARAM∗∗ : marker to explicit the location where to change the param loading in the libparam.

• ∗∗SIMU∗∗ : marker to explicit the location to include the simulation file with the appropriate extension (default value
for this extension is .inc).

Every time that one of these keywords is encountered by openCarac, the following line in the file is altered before a running
of the simulator occurs.

After having prepared the files like as previously described, the user will be able to configure openCarac to make it
change the library to load for model selection, for libparam selection or the files to include. Here is an example of a Spice
main file that allows to run a carac using openCarac:

** openCarac example circuit **

MODEL
.LIB "../../foundryModels/models.lib" TYPICAL

PARAM
.LIB "../../parameters/conditions.lib" TYP

SIMU
.INC "op.inc"

*.INC "openLoop.inc"

*.INC "transient.inc"

*.INC "noise.inc"

** The netlist is a separated file:
.INC "nampli.nsx"

.END

10

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

In this example is represented the control file that contains the markers. We can note that, in the model file named
models.lib is loaded a corner library called TYPICAL. Respectively, in the libparam file named conditions.lib
is loaded a param library called TYP. In here, four simulations are needed to characterize the circuit, they are separated
into different files: op.inc, openLoop.inc, transient.inc and noise.inc. The netlist that contains the circuit
definition has its extension set to .nsx, it can be altered by an other file with the same extension.

2.3 Run a carac

Now that your Spice circuit files are properly organized, your first carac is now ready to run: you are now able to automatize
the execution of various simulations while altering both corner and param libraries to load.

Note that openCarac will not include every simulation files located in the same folder by itself, only you can choose the
list of these simulations. So, in order to choose corner and param libraries to load for both model and libparam and the
simulations to run, the last step is to add a configuration file in the same folder as your Spice main file; the name of such
a file is, by default, set to carac.conf. Its syntax is described in chapter openCarac usage.

Supposing that we want to run a carac with the previous Spice control file where we want to alter both corner and param
libraries and run all of the simulations; let’s pretend that corner libraries names are as follows:

• TYPICAL

• WORST

• BEST

and param libraries are:

• TYP

• VDD_IBIAS_TEMP (where supply voltage, bias current and temperature vary by steps)

Then the carac.conf configuration file may look like as follows (details about the syntax are given in chapter openCarac
usage):

openCarac configuration file example

.CARAC myCarac

.CORNER TYPICAL WORST BEST

.PARAM TYP VDD_IBIAS_TEMP

.SIMU op openLoop transient noise

To run your carac through your command line interface, get to the folder where your carac.conf file is located and
run openCarac main executable according to your command as described in section Add openCarac to your environment;
all the informations about the execution are printed in the standard output or the log file you have specified, openCarac will
execute your simulator, extract the results and then exit.

When executing, openCarac will run the four simulations op, openLoop, transient and noise by including the files and
alter corner and param libraries. So, since there are in this case 4 simulations, 3 corners and 2 params, there will be
4×3×2 = 24 runnings.

As soon as every running is terminated, openCarac parses your simulator results files looking for the values of mea-
sures (data values extracted using a .MEAS or .MEASURE directive) and creates HTML files, LATEX code and GNU Octave
scrips. These files are saved into a openCaracFiles folder created next to your carac.conf file.

If you can see these results files, it seems that you have perfectly integrated openCarac into your environment and that
you are now able to automatize your simulator runnings. Congratulations!

Detailed informations about openCarac execution and its configuration are given in both chapters Execution details
openCarac usage.

11

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

Chapter 3

Execution details

Abstract: In this chapter is described how does openCarac mainly work. Section Overview gives an overview about its
execution; section Native functions describes native functions that can be used to do more than a simple results extraction;
section In batch mode details openCarac execution when batch mode is activated and section Through the graphical user
interface shows what can be done using the GUI.

3.1 Overview

Since openCarac is initially used to execute your favorite simulator many times whilst altering libraries loadings and files
inclusions using Spice directives, relative path links to access these files must be preserved; and, since the simulator
executions may take some time, it can be useful to keep access to your files when having a running in progress.

As a consequence, choice has been made to create temporary folders to process the runnings into when openCarac
is executed: copies of necessary files are created in these folders located next to the configuration directory. In such a
case, relative links to access Spice libraries and included files remain corrects1. See chapter Files alteration for more
informations about the creation of temporary folders.

Note that if you have a lot of runnings, every temporary folders are created first and then the simulator is executed into
each one of them. These directories are not created one at the time in order to keep the capability to process the runnings
simultaneously with different computers; a solution to do so requires the alteration of hooks. A description of hooks is given
in chapter Expert mode; openCarac also comes with an API example detailing how to make it wait for the end of executions
in background.

When creating these temporary folders, openCarac modifies your Spice files to alter library loadings and file inclusions.
Note that you can also alter parameter values when defining your simulation as described in subsection .SIMU directive.
It uses the markers that are available in your main file to select the line to alter (see section Organize your Spice circuit
files), only lines following these keywords are modified. So, beware your Spice inclusion directive locations before running
your carac and make sure that they are always following a keyword if they are to be altered; otherwise, more than one file
inclusion could appear and your runnings may not work properly.

Your simulator command which has been defined in your openCarac application environment file (see section Add
openCarac to your environment) is executed whilst passing as argument the copy of your main file for each temporary
folder, outputs are redirected into log files. When every runnings have been proceeded, these files are being parsed to get
the values of your measures (a measure is what is calculated by your simulator through a .MEAS or .MEASURE directive)
and saved into an openCaracFiles folder created in the configuration directory; then temporary folders are deleted.
Gathered informations are used for the results extraction, i.e. creation of output files such as HTML or LATEX tables and
GNU Octave T M scripts, also located in the openCaracFiles folder.

3.2 Native functions

openCarac has originally been created to treat the simulator data and generate output files. Custom functions can be
created using the API to treat the same data other ways, but openCarac also comes with native functions. These functions
are described bellow:

1Of course, this also work with absolute paths.

12

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

3.2.1 Archives creation

When running openCarac while activating the "archive creation mode", such as when using the --archive option (see
section Execution options for more informations about execution options), archive folders are created after results extrac-
tion, each of them containing every files openCarac needs to run; i.e. every files to copy in temporary folders. Also, if having
model and libparam loaded in the configuration, both library files are also saved into the archive folder. Two folders with the
same names as the directories containing these library files are created and the model and libparam files are copied into
them. The name of the archive folders is formated using keyword archive, the date and time of their creation, the name
of both library files and their parent directories.

Also, openCarac output files are created in it: these files are re-formated in order to contain every informations and
results from various caracs in the same configuration. Note that an archive folder is created for each group of caracs with
the same model and libparam files in the same configuration.

3.2.2 Full summary creation

When running openCarac while activating the "full summary creation mode", such as when using the --fullsummary
option (see section Execution options for more informations about execution options), a full summary file is created after
results extraction. In such a file can be found a tabular summarizing every results having a checkmeas in a carac. Each
result having the same name will have its value printed in the same line of the tabular; columns are separated function of
their library files, i.e. their model and libparam, in the carac they are extracted from.

This summary file is created in the current directory, i.e. where openCarac has been executed. The names of these
files are formated using keyword opencarac_Check_Summary and the date and time of their creation.

3.3 In batch mode

When calling openCarac main executable and activating "batch mode", a whole sequence is processed without human
intervention.

First, the openCarac environment is loaded and any potential argument is parsed. Every configuration file to load is
then opened and parsed.

In case "extractres mode" is activated, results are extracted without executing the simulator for any potential running.
Otherwise, for each loaded configuration, the simulator is executed for every running before results extraction. There are
two possibilities:

• either "run by step mode" is activated: for each carac in each configuration, the simulator is executed for every
runnings and, for the whole carac, temporary folders are deleted unless "debug mode" is activated; then results are
extracted.

• or "run by step mode" is deactivated: for each carac in each configuration, the simulator is executed for every
runnings. After having executed the simulator with any potential running, for every carac of every configuration,
temporary folders are deleted unless "debug mode" is activated; then results are extracted.

If "archive creation mode" is activated, archives are then created for each configuration as described in subsection Archives
creation.
If "full summary creation mode" is activated, a full summary is then created as described in subsection Full summary
creation.

3.4 Through the graphical user interface

openCarac graphical user interface is not yet implemented. This will be available in a future release.

13

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

Chapter 4

Files alteration

Abstract: In this chapter is described the procedure openCarac follows to tune simulator files to have them ready for
characterization. Section Overview gives an overview of the files alteration, section Creation of temporary folders details the
necessity of creation of temporary folders; both sections Substitution after a marker and Replacing netlist inclusion show
how the main file is altered, sections Substitution of parameters and Add parameters settings describe the parameters
settings, section Comment of possible inclusions details the "comment of possible inclusions" mode and section Check
mode details the alterations in check mode.

4.1 Overview

First of all, know that openCarac limits its file alteration to every files having its extension matching one of the "files
extension filter" (see subsection filesExtensionFilter for more informations) in the configuration folder hierarchy. In order to
proceed to the substitutions, openCarac also has to read these files looking for patterns to substitute; such an operation
may lead to execution time increase if the matching files contain a lot of lines. As a consequence, it is highly recommended
to move to parent folders any huge file that does not contain data to substitute.

Also, one must know that Spice simulator files syntax changes from one simulator to an other; thus, it remains impos-
sible to have a file parser in openCarac as it might not be compatible with every simulator. As a consequence, openCarac
has its own way to process the substitutions.

In every case, substitutions are performed line by line and openCarac is not capable of detecting data defined on
various lines. Indeed, some Spice simulators support (just like openCarac configuration file parser) the possibility to add
a plus (+) at the beginning of a line to make it the continuation of the previous one. Such a syntax is not supported by
openCarac for substitutions in Spice simulator files.

openCarac detects keywords in the files that are parsed, since it has been made for substituting in Spice simulator input
files, keywords are usually searched at the beginning of the line. The definition of the simulator keywords, as described in
subsection Simulators sections, allows to define what they are. openCarac uses space character as a delimiter between
different elements; so, when a substitution occurs, spaces are added between the elements.

4.2 Creation of temporary folders

While openCarac executes the Spice simulator for each running, it would be nice to be able to continue working in the
configuration folder; also, making possible to execute the Spice simulator for various runnings at the same time could be
great. For these reasons, choice has been made to create temporary folders next to the configuration directory: indeed,
relative file paths remain correct since the hierarchy is identical and more than one temporary folder can be created at
once. So, when executing the simulator for a specific running, openCarac starts by creating this temporary folder and the
simulator is executed whilst loading the copy of the main file in this directory.
Note that, when creating temporary folders, not every file from the configuration folder is copied in them, only the ones
having their extension matching one of the "files extension filter", see subsection filesExtensionFilter for more informations.
The hierarchy in the temporary folder remains identical. Also, every duplicated file is parsed by openCarac looking for
substitution patterns according to the main file markers and simulator files syntax.

14

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

4.2.1 Simulator files syntax

When temporary folders are created, openCarac substitutes various lines according to the running settings (model, lib-
param, corner, param...) and the simulator files syntax. Depending on the selected simulator, substitutions might be
case sensitive (see subsection isCaseSensitive for more informations) and depend on the Spice directives (.INC, .L←↩
IB, .PARAM) as defined in the openCarac environment (see subsections incDirective, libDirective, paramDirective and
paramEquality for more informations). Comment syntax and string delimiter might be added by openCarac when substitut-
ing and are also simulator dependent (see subsection commentSyntax and stringDelimiter for more informations).

4.3 Substitution after a marker

For each marker in the main file, openCarac substitutes the line following it by setting the directive, the file path surrounded
by the simulator string delimiter and the parameter (in case of the "simu marker", no parameter is added; the condition of its
existence is ignored). If the file path is not defined, openCarac prints a warning and, on the following line, adds the directive
and the parameter at the first and third position while keeping the second element unchanged, the end of the line is also
copied identically. If the parameter is not defined, openCarac prints a warning and, on the following line, adds the directive
and the file path surrounded by the simulator string delimiter while keeping the end of the line unchanged. If neither the file
path or the parameter is defined, no substitution occurs after the marker.

After the "model marker", openCarac adds the simulator .LIB directive, the carac selected model surrounded by the
simulator string delimiter and the running selected corner.

After the "param marker", openCarac adds the simulator .LIB directive, the carac selected libparam surrounded by
the simulator string delimiter and the running selected param.

After the "simu marker", openCarac adds the simulator .INC directive and both the selected simulation name and the
"simulation file extension" surrounded by the simulator string delimiter.

Note: Substitutions after a marker only occur in the main file.

4.4 Replacing netlist inclusion

openCarac replaces a netlist inclusion in the main file. A replacement occurs when only one line matching a netlist inclusion
is found, otherwise an error message is printed and no replacement occurs. A netlist inclusion is detected when a line starts
with the simulator .INC directive and contains the "netlist file extension". Case sensitivity for the detection of the simulator
.INC directive depends on the simulator settings.

Note: Netlist inclusion replacement only occurs in the main file.

4.5 Substitution of parameters

When parameters are to be substituted, openCarac proceeds to the parameter alteration in every file that is copied in
the temporary folder. A parameter substitution can only occur on a line starting with the simulator .PARAM directive. To
substitute a parameter, the line must contain the following pattern: the parameter name followed by zero or more spaces,
followed by the simulator parameter equal delimiter, followed by either "one or more spaces and a non-space string" or "no
space and a string that does not start with any character of the simulator parameter equal delimiter". In such a case, the
detected string is substituted by the parameter value.

Case sensitivity for the detection of the simulator .PARAM directive, the parameter name and the simulator parameter
equal delimiter depends on the simulator settings.

4.6 Add parameters settings

If, after having parsed every file to copy in the temporary file folder, some parameters have not been substituted, openCarac
proceeds to the parameters settings addition. For each parameter name that has not been substituted, a warning is printed
and a line is added at the end of the simulation included file: the line starts with the simulator .PARAM directive and is

15

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

followed by the parameter name, the simulator parameter equal delimiter and the parameter value; elements are separated
by spaces.

Case sensitivity for the detection of the parameter name depends on the simulator settings.

Note: Parameter setting additions only occur in the simulation included file.

4.7 Comment of possible inclusions

When openCarac "comment of possible inclusions" is activated, in the main file, the simulator comment syntax is added
at the beginning of every line starting with the simulator .INC directive and containing the name of a possible simulation
followed by the simulation file extension. The simulator comment syntax is also added at the beginning of every line starting
with the simulator .LIB directive and containing the file tail of a possible model or libparam. A possible simulation name is
the name of a simulation defined in a carac of the same configuration. A possible model or libparam is a model or libparam
defined in a carac of the same configuration.

Case sensitivity for the detection of simulator .INC and .LIB directives, simulation name, simulation file extension,
model or libparam file tails depends on the simulator settings.

Note: Comments of possible inclusions only occur in the main file.

4.8 Check mode

When openCarac "check mode" is activated, in every file that is copied in the temporary folder, the simulator comment
syntax is added at the beginning of every line starting with one of the element of the "to remove in check mode" list of the
selected simulator, see subsection toRemoveInCheckMode for more informations.

Case sensitivity for the detection of elements depends on the simulator settings.

16

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

Chapter 5

Simulator specificities

Abstract: In this chapter is described the integration of Spice simulators in openCarac. Section Execution of the simulator
details the execution of third party software components in openCarac, section Saving the results describes the calling of
the parsers and the saving of the results while sections Gnucap files parser, Ngspice files parser, Xyce files parser and
Smash files parser describe the behaviour of native files parsers in openCarac; then section User defined command shows
how to replace the execution of a native Spice simulator by a custom command.

5.1 Execution of the simulator

During its own execution, openCarac calls external commands with a copy of the main file in a temporary folder as an argu-
ment. Note that the execution of this command is done from the current directory unless the simulator "directory change"
attribute is activated (see subsection changeDirectory for more informations); in such a case, openCarac proceeds to a
directory change into the temporary folder before executing the command and changes back to the previous directory right
after.

If "custom execution mode" is not activated, whatever the selected simulator, openCarac executes its command and
collects informations the same way. As a consequence, the description given in this section remains correct for every Spice
simulator or command executed through openCarac.

If "custom execution mode" is activated, a custom procedure is used to execute the Spice simulator; a description of
how to tune it is given in chapter Expert mode. What is described in this section does not apply to this mode.

When executing the Spice simulator, openCarac uses settings as defined in its environment and the path to access
the main file. In these settings, one can find the "command", the "check options" and the "run options". See subsections
command, checkOptions and runOptions for more informations. If "check mode" is activated, the executed command is
the concatenation of the Spice simulator "command", the "check options" and the absolute path to to access the main file.
If "check mode" is not activated, the executed command is the concatenation of the Spice simulator "command", the "run
options" and the absolute path to to access the main file.

In both cases, the concatenation is evaluated by openCarac. So, in order to make sure that the execution is done
correctly, escape syntax must be used for spaces and " { } \ $ [] characters.

During the execution, what is returned in the standard output or the error output by the Spice simulator is caught by
openCarac and written in a log file. The log file is defined with the same root name as the main file and the simulator "log
file extension", see subsection logExtension for more informations. Note that whatever is returned through a graphical user
interface cannot be caught by openCarac.

If "monitor error code" attribute is activated, as defined in subsection monitorErrorCode, openCarac prints an error if
the code returned by the Spice simulator is not equal to 0.

17

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

5.2 Saving the results

After having executed the Spice simulator, openCarac proceeds to a results saving: it calls the appropriate native files
parser to extract measurements and, if "files copy" is activated (see subsection filesCopy for more informations), it copies
every file from the temporary folder having their extension matching one of the simulator "save filter" list (see subsection
saveFilter for more informations) into the openCaracFiles folder in the configuration directory.

Files parsing depends on the Spice simulator: openCarac is natively compatible with some of them, its behaviour is
described in the following sections.

5.3 Gnucap files parser

openCarac files parser for Gnucap is identical for every file that is found in the temporary folder with the "log file extension";
these files are sorted using dictionary mode to define the parsing order.

Step name: If the parsed file has the same root name as the main file, the step name has no prefix; otherwise, relative
path to access the parsed file in the temporary folder is used as a prefix for the step name. In a single file, the step number
is defined through an integer that is incremented each time a hash (#) is encountered and is used as the step name; if this
hash is followed by a keyword (time, freq), this keyword is used as a suffix for the step name.

Checkop: If, in a line starting with a hash (#) with no keyword (time, freq), is available a string V(theNet) with "theNet"
matching a checkop pattern, openCarac extracts its value in the following lines.

Extractop: If, in a line starting with a hash (#) with no keyword (time, freq), is available a string theParam(the←↩
Device) with "theParam" matching an extractop pattern and "theDevice" matching an extractop filter pattern, if any,
openCarac extracts its value in the following lines.

Measures: For each line having an equal sign (=) in it, openCarac considers it as a measure; characters from the beginning
of the line to the equal sign are used as the measure name, characters from the equal sign to the end of the line or an
other equal sign are used as the value. In case of measures, openCarac automatically converts mnemonics to scientific
notation.

Running state: openCarac considers that an error occurred if one of the following patterns is found in the parsed files:

• ∧ ?

• did not converge

Guidelines:

• Gnucap supports both .PARAM directive with and without equal sign (=); however openCarac is set, both syntaxes
cannot be used at the same time in order to permit parameter substitutions.

• By default, Gnucap uses mnemonics for operating point extracted values; for openCarac not to print "not a number"
warnings, scientific notation must be used using Gnucap "Basic" option: .OP BASIC.

5.4 Ngspice files parser

openCarac files parser for Ngspice is identical for every file that is found in the temporary folder with the "log file extension";
these files are sorted using dictionary mode to define the parsing order.

In Ngspice log file parser, openCarac reads the file line by line and identifies categories, this identification is not case-
sensitive. Parsing ends when pattern total elapsed time is encountered. Lines containing one of the following
pattern are ignored:

• trying gmin

18

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

• failed

• note:

The category can take different values: "initial" (used for measure and checkop extractions), "analysis" (used for measure
extractions), "device" (used for extractop extractions) and "legend" (where informations are ignored by openCarac). open←↩
Carac considers that the category is "initial" when keyword node voltage or doing analysis is encountered;
it considers that the category is "analysis" when keyword analysis is encountered; it considers that the category is
"device" when keyword device is encountered. The rest of the file is considered as "legend" when one of the following
pattern is found:

• models

• legend:

• index

• total cpu time:

Step name: If the parsed file has the same root name as the main file, the step name has no prefix; otherwise, relative
path to access the parsed file in the temporary folder is used as a prefix for the step name. In a single file, the step name
is defined through an integer that is incremented each time pattern doing analysis is encountered.

Checkop: When parsing lines in the "initial" category, if the line contains two elements while the first one matches a
checkop pattern and the second one is a double, openCarac extracts its value according to the checkop patterns list.

Extractop: When parsing lines in the "device" category, devices names are saved from parsing of the line containing the
device keyword: from columns 2, 3 and 4 in the same line; the element in the first column is considered as the parameter
name and elements in columns 2, 3 and 4 are considered as the parameter value for the previously saved device name. If
the parameter name matches an extractop pattern and the device name matches an extractop filter pattern, if any, open←↩
Carac extracts its value. An exception is made in case the parameter value is not a double and the parameter name differs
from "model": in such a case, the value is ignored.

Measures: When parsing lines in the "initial" or "analysis" category, if the second element of the line is an equal sign (=),
openCarac considers it as a measure; the first element is used as the name and the third element is used as the value.

Running state: openCarac considers that an error occurred if one of the following patterns is found in the parsed files:

• error on line

• ngspice stopped due to error

• fatal error in ngspice

5.5 Xyce files parser

openCarac has two different files parsers for Xyce: one of them is dedicated to parse every file that is found in the
temporary folder with the "log file extension"; the other one parses every file that is found in the temporary folder with .ic
extension. In both cases, files with the same extension are sorted using dictionary mode to define the parsing order.

In Xyce log file parser, openCarac reads the file line by line and identifies categories, this identification is not case-
sensitive. The category can take different values: "operating point information" (used for extractop extractions), "measure
functions" (used for measure extractions) and "legend" (where informations are ignored by openCarac). openCarac con-
siders that the category is "operating point information" when keyword operating point information is encoun-
tered; it considers that the category is "measure functions" when keyword measure functions is encountered. The
rest of the file is considered as "legend" when the following pattern is found: ∗∗∗∗∗.

In Xyce ∗.ic files parser, openCarac reads the file line by line and identifies keywords at the beginning of the line.
Informations located after a keyword .ic or .nodeset are used for checkop data extraction.

19

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

Step name: If the parsed file has the same root name as the main file and has the "log file extension", the step name has
no prefix; otherwise, relative path to access the parsed file in the temporary folder is used as a prefix for the step name. In
a single log file, the step name is defined through an integer that is incremented each time pattern operating point
information: is encountered, this number follows the prefix (if any) after an underscore (_).

Checkop: Checkop data is extracted by the ∗.ic file parser. For each line in a ∗.ic file, if the first element matches the
string .ic or .nodeset (matching is not case sensitive), every data located after this pattern is split from equal signs
(=), the first part represents the node voltage name and the second part represents its value. If the first parts matches the
string V(theNet) with "theNet" matching a checkop pattern, openCarac extracts its value.

Extractop: Extractop data is extracted by the log file parser. When parsing lines in the "operating point information"
category: if, in a line starting with the name keyword, is available a string matching an extractop filter pattern, if any, the
element index is remembered by openCarac for a value extraction in the following lines; if, in a line starting with a keyword
matching an extractop pattern, an element index has been remembered by openCarac for a value extraction, openCarac
extracts its value. The extractop name is formated as theParam(theDevice) with "theParam" matching the extractop
pattern and "theDevice" the remembered string matching an extractop filter pattern. Note that some incorrect behaviour
may happen since Xyce output sometimes lacks of spaces (tested with version 6.3.).

Measures: Measures are extracted by the log file parser. When parsing lines in the "measure functions" category, for each
line having an equal sign (=) in it and not having pattern measure start time, openCarac considers it as a measure;
characters from the beginning of the line to the equal sign are used as the measure name, characters from the equal sign
to the end of the line or an other equal sign are used as the value.

Running state: openCarac considers that an error occurred if one of the following patterns is found in the parsed log files:

• xyce abort

• simulation aborted due to error

5.6 Smash files parser

openCarac has three different files parsers for Smash: one of them is dedicated to parse every file that is found in the
temporary folder with the "log file extension"; an other one parses every file that is found in the temporary folder with .mes
extension; the third one parses every file that is found in the temporary folder with .op extension. In each case, files with
the same extension are sorted using dictionary mode to define the parsing order.

In Smash log file parser, openCarac reads the file line by line looking for specific keywords to define the running state.
In Smash ∗.mes files parser, openCarac reads the file line by line looking for a pattern to detect measure values.
In Smash ∗.op files parser, openCarac reads the file line by line and identifies categories, this identification is not case-

sensitive. The category can take different values: "nets" (used for checkop extractions), "sources" (where informations are
ignored by openCarac) and "devices informations" (used for extractop extractions). openCarac considers that the category
is "nets" when keyword nets: is encountered; it considers that the category is "sources" when keyword sources: is
encountered and that the category is "devices informations" when one of the following patterns is found:

• ∗ (m) mos transistors

• ∗ (c) capacitors

• ∗ (d) diodes

• ∗ (l) inductors

• ∗ (q) bipolar transistors

• ∗ (r) resistor

20

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

Step name: If the parsed file has the same root name as the main file and has a .op extension or the same root name as
the main file and two extensions while the second one is .mes, then the step name has no prefix; otherwise, relative path
to access the parsed file in the temporary folder is used as a prefix for the step name. In a single .op file, nothing is added
to the prefix; if there is no prefix, it is then set to 0. In a single .mes file, if the measure name contains an opening bracket
([) and finishes with a closing bracket (]), then what is located between the brackets is considered as the step value and
is removed from the step name; otherwise, the step value is set to 0.

Checkop: Checkop data is extracted by the ∗.op files parser. When parsing lines in the "nets" category, if the line contains
more than two elements while the second one is an equal sign (=) and the third one is a double, openCarac extracts its
value according to the checkop patterns list.

Extractop: When parsing lines in the "device" category, devices names are defined as the first element of a line containing
keyword multiplicity; then, the line is considered as a list of parameters definitions separated by comas (,), each
parameter definition being composed by the parameter name, an equal sign (=) and the parameter value. If the parameter
name matches an extractop pattern and the device name matches an extractop filter pattern, if any, openCarac extracts its
value.

Measures: Measures are extracted by the ∗.mes files parser. For each line in a ∗.mes file, if it matches pattern ∗? =
?∗ (see TCL string match command matching rules for more informations), openCarac considers it as a measure;
characters from the beginning of the line to the equal sign are used as the measure name, characters from the equal sign
to the end of the line or an other equal sign are used as the value.

Running state: openCarac considers that an error occurred if one of the following patterns is found in the parsed log files:

• error

• load failed

Guidelines:

• By default, Smash uses mnemonics for measure values; for openCarac not to print "not a number" warnings, scientific
notation must be used by calling Smash directive: .DIGITS 4 ENG=NO.

5.7 User defined command

If none of the natively compatible simulators is to be used, openCarac also allows to set a user defined command as the
simulator. Its setting and execution remain identical with any natively compatible simulators. The main difference is that no
files parser is available and no result extraction can occur by default.

On the other hand, it remains possible to customize openCarac hooks to proceed to files parsing. Alteration of hooks
is shown in chapter Expert mode, openCarac also comes with an API example detailing how to make it parse files and add
measures.

21

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

Chapter 6

openCarac usage

Abstract: In this chapter is described how to customize openCarac environment and its execution. Section Environment
file syntax describes the environment file syntax, i.e. how to change openCarac settings and default behaviour; section
Execution options lists execution options that overload openCarac default behaviour and section Configuration file syntax
gives the syntax to set the configurations and impact on caracs, simulations, runnings, etc.

6.1 Environment file syntax

In the openCarac environment file is defined how openCarac execution is performed and what is the simulator files syntax
so that substitutions occur correctly. This file is located in a .openCarac folder in the user home directory.

openCarac environment file format is based on the informal standard for configuration files: it is a simple text file
with basic structure composed of sections, properties and values.

The basic element contained in the environment file is the key or property. Every key has a name and a value, delimited
by an equals sign (=). The name appears to the left of the equals sign.

Keys are grouped into named sections. The section name appears on a line by itself, in square brackets ([and]). All
keys after the section declaration are associated with that section. There is no explicit "end of section" delimiter; sections
end at the next section declaration, or the end of the file. Hashes (#) indicate the beginning of a comment. Comment lines
are ignored. Hashes can be used in a key value as soon as they are escaped using a backslash (\#).

6.1.1 Section application

In the application section of the environment files is defined openCarac default behaviour about various properties, some
of them can be overloaded when calling openCarac main executable using Execution options.

6.1.1.1 modelMarker

For openCarac to detect the main file, this model marker must be printed in it. When creating the temporary folders, model
and corner substitution is performed on the line following this model marker. Model marker must be a string that is not
equal, without case sensitivity, to param marker and simu marker. It should starts with a star (∗) to be a Spice comment;
otherwise, a warning is printed by openCarac.

6.1.1.2 paramMarker

For openCarac to detect the main file, this param marker must be printed in it. When creating the temporary folders,
libparam and param substitution is performed on the line following this param marker. Param marker must be a string
that is not equal, without case sensitivity, to model marker and simu marker. It should starts with a star (∗) to be a Spice
comment; otherwise, a warning is printed by openCarac.

22

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.1.1.3 simuMarker

For openCarac to detect the main file, this simu marker must be printed in it. When creating the temporary folders, open←↩
Carac simulation file inclusion is substituted on the line following this simu marker. Simu marker must be a string that is not
equal, without case sensitivity, to model marker and param marker. It should starts with a star (∗) to be a Spice comment;
otherwise, a warning is printed by openCarac.

6.1.1.4 filesExtensionFilter

When creating a new or opening an existing configuration, openCarac parses the found files in the configuration folder
hierarchy. Not all the files are used by openCarac: only the ones having an extension matching one of the extensions
filtered by the "files extension filter" attribute. Files extension filter must be a list of strings, each of them being a single
word starting with a dot (.), openCarac automatically converts them to lower case.

6.1.1.5 simulationFileExtension

When adding a simulation to a carac, openCarac automatically verifies that the simulation file exists. The simulation file
must have an extension equal to this "simulation file extension". Simulation file extension must be a string, not a list itself,
of at least two characters and starting with a dot (.). If the simulation file extension does not appear in the "files extension
filter", it is automatically added.

6.1.1.6 netlistFileExtension

When adding a netlist to a carac, openCarac automatically verifies that the netlist file exists. The netlist file must have
an extension equal to this "netlist file extension". Netlist file extension must be a string, not a list itself, of at least two
characters and starting with a dot (.). If the netlist file extension does not appear in the "files extension filter" attribute, it is
automatically added.

6.1.1.7 archive

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When archive creation is
activated, openCarac main executable proceeds to archives creation for each loaded configuration after results extraction.

6.1.1.8 fullsummary

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac full
summary creation is activated, openCarac main executable proceeds to full summary creation after results extraction and
archives creation.

6.1.1.9 filesCopy

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac simulator
files copy is activated, when parsing simulator results files of a running, simulator files are copied into the openCarac←↩
Files folder located in the configuration directory. The list of files to copy is filtered by extension, every file having its
extension matching one the patterns defined in the "save filter" attribute of the simulator is selected for copy, see subsection
saveFilter for more informations.

6.1.1.10 runBySteps

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac "run by
step mode" is activated, openCarac main executable deletes temporary folders for each running and extracts results after
every simulator execution for each carac instead of doing it for the whole configuration.

6.1.1.11 custom

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac "custom
execution mode" is activated, custom procedure openCarac_customRunSimulator is called to run the simulator
instead of using openCarac default behaviour. See section Custom procedure for more informations.

23

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.1.1.12 commentOfPossibleInclusions

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac "comment
of possible inclusions" is activated, when creating runnings temporary folders, openCarac modifies the main file to comment
any model / libparam library selection or simulation file inclusion. A library selection is a line starting with the simulator "lib
directive" and containing the tail of a possible model or libparam, i.e. a model or libparam defined in a carac of the same
configuration. A simulation file inclusion is a line starting with the simulator "inc directive" and containing the name of a
possible simulation, i.e. a simulation defined in a carac of the same configuration, followed by the simulation file extension.
When commenting in a file, the simulator "comment syntax" is added at the beginning of the line.

6.1.1.13 creationOfHtmlFiles

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac "creation
of html files" is deactivated, no HTML file is generated by openCarac. This selection affects the behaviour of results
extraction and archive creation.

6.1.1.14 creationOfLatexFiles

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac "creation
of latex files" is deactivated, no LATEX file is generated by openCarac. This selection affects the behaviour of results
extraction and archive creation.

6.1.1.15 creationOfOctaveFiles

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When openCarac "creation
of octave files" is deactivated, no GNU Octave T M file is generated by openCarac. This selection affects the behaviour of
results extraction and archive creation.

6.1.1.16 simulator

This attribute is a string corresponding to the name of the simulator that is selected by default by openCarac. Its value is
automatically converted to lower case. When creating a carac, the default value for its "simulator" attribute, before being
overloaded, is identical to this "default simulator" attribute.

6.1.1.17 logfile

This attribute may be a file path or set to one of the two values stdout and stderr. If "log file" attribute is set to a file path,
then messages are printed into the given file. If "log file" attribute is set to stdout, then messages are printed in the standard
output. If "log file" attribute is set to stderr, then messages are printed in the error output.

6.1.2 Simulators sections

In every simulator section is defined the syntax to tune the files or execute the command for the appropriate simulator. The
section name can be one of the followings; definition of the properties remain correct for each of them:

• ngspice

• gnucap

• xyce

• smash

• command

6.1.2.1 command

This sets the command to execute the simulator. This command is executed by openCarac through the TCL exec command
if openCarac "custom execution mode" boolean is not activated. It is concatenated with either "run options" or "check
options" depending on the value of openCarac "check mode" boolean.

24

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.1.2.2 checkOptions

The simulator command is executed by openCarac through the TCL exec command if openCarac "custom execution mode"
boolean is not activated. If openCarac "check mode" boolean is activated, the command is concatenated with the value of
this "check options" attribute.

6.1.2.3 runOptions

The simulator command is executed by openCarac through the TCL exec command if openCarac "custom execution mode"
boolean is not activated. If openCarac "check mode" boolean is deactivated, the command is concatenated with the value
of this "run options" attribute.

6.1.2.4 saveFilter

This must be a list of strings, each of them being a single word starting with a dot (.), openCarac automatically converts them
to lower case. When calling openCarac files parser, if openCarac "simulator files copy" boolean is activated, a copy of files
having their extension matching a pattern in this list is performed from the temporary folder into the openCaracFiles
directory in the configuration file folder. Matching follows the rules of TCL "string match" command without case-sensitivity.

6.1.2.5 toRemoveInCheckMode

This must be a list of patterns that are not lists themselves and are not empty strings. When having openCarac "check
mode" boolean activated, openCarac aims to quickly verify that no error would occur when executing the simulator. To make
sure that a simulator check does not take too much time, some lines from the files to copy in the temporary folders can
be removed. When creating the temporary folders, files are copied and, if openCarac "check mode" boolean is activated,
any line starting with a pattern from this list is substituted and the simulator comment syntax is added at the beginning
of the line. Matching follows the rules of TCL "string equal" command ; case sensitivity depends on the simulator "case
sensitivity" attribute

6.1.2.6 logExtension

This sets the log file extension to print what is returned by the simulator command in. The command is executed by open←↩
Carac through the TCL exec command if openCarac "custom execution mode" boolean is not activated. What has been
printed by the command is caught by openCarac and written in a file having the same root name as the main file in the
temporary folder and this "log extension". Log file extension must be a non-empty string, not a list itself, of at least two
characters and starting with a dot (.), openCarac automatically converts it to lower case. If the log file extension does not
appear in the "save filter" attribute of the simulator, it is automatically added.

6.1.2.7 isCaseSensitive

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When creating a temporary
folder, files are copied, substitutions occur and files are included or loaded. In order to know what to substitute, this case
sensitivity is used for matching. This also affects openCarac files parser: case is not sensitive to add measures but the
simulator case sensitivity is taken into account to filter devices or net names.

6.1.2.8 changeDirectory

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When executing the
simulator command, depending on the simulator behaviour, files inclusion can either be relative to the file they are included
in or to the directory it has been executed in. If "directory change" attribute is activated, before executing the simulator
command, openCarac performs a changing of directory so that files inclusion are also relative to the directory it has been
executed in. After having executed the command, openCarac changes back the previous location.

6.1.2.9 monitorErrorCode

This property is a boolean, its value must be set to "yes" for activation and "no" for deactivation. When executing the
simulator command, if "custom execution mode" is not activated, an error code is returned and openCarac can monitor it.

25

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

If "monitor error code" attribute is activated, openCarac prints an error if the execution of the simulator command returns a
non-zero error code. Otherwise, the returned error code is ignored by openCarac.

6.1.2.10 commentSyntax

Its value must be a non-empty string that is not a list. When creating a temporary folder, files are copied and substitutions
occur. In case a line must be removed by openCarac, the "comment syntax" is added at its beginning.

6.1.2.11 incDirective

Its value must be a non-empty string that is not a list ; also, must be is different from the simulator "lib directive" and
simulator "param directive". To define it, case sensitivity depends on the simulator "case sensitivity" boolean attribute. It
is expecting a syntax based on the Spice .INC directive to define how substitutions are performed by openCarac. When
creating a temporary folder, files are copied, substitutions occur and simulation or netlist files are included. To substitute,
openCarac considers that a line matches a file inclusion when it starts with this "inc directive". To include a simulation or
netlist file, this "inc directive" is added at the beginning of the line.

6.1.2.12 libDirective

Its value must be a non-empty string that is not a list ; also, it must be different from the simulator "inc directive" and
simulator "param directive". To define it, case sensitivity depends on the simulator "case sensitivity" boolean attribute. It
is expecting a syntax based on the Spice .LIB directive to define how substitutions are performed by openCarac. When
creating a temporary folder, files are copied, substitutions occur and model or libparam files are loaded. To substitute,
openCarac considers that a line matches a file loading when it starts with this "lib directive". To load a model or libparam
file, this "lib directive" is added at the beginning of the line.

6.1.2.13 paramDirective

Its value must be a non-empty string that is not a list ; also, it is different from the simulator "inc directive" and simulator
"lib directive". To define it, case sensitivity depends on the simulator "case sensitivity" boolean attribute. It is expecting a
syntax based on the Spice .PARAM directive to define how substitutions are performed by openCarac. When creating a
temporary folder, files are copied, substitutions occur and parameters values are tuned. To substitute, openCarac considers
that a line matches a parameter setting when it starts with this "param directive" and that the "param equality" is located
between its name and its value. To set a parameter that has not been found in the files, this "param directive" is added at
the beginning of the line.

6.1.2.14 paramEquality

It is the string located between a parameter name and its value to match the syntax based on the Spice .PARAM directive
and define how substitutions are performed by openCarac. When creating a temporary folder, files are copied, substitutions
occur and parameters values are tuned. To substitute, openCarac considers that a line matches a parameter setting when
it starts with the "param directive" and this "param equality" is located between the parameter name and its value. To set a
parameter that has not been found in the files, this "param equality" is added between the parameter name and its value.

6.1.2.15 stringDelimiter

Its value must be an empty string or a single character. When creating a temporary folder, files are copied, substitutions
occur and files are included or loaded. In each case of path substitution, simulator "string delimiter" is used before and
after the path addition.

6.2 Execution options

When executing a TCL interpreter, it is possible to add a vector of arguments during TCL execution, these arguments can
be used to alter openCarac’s behaviour. For instance, it has been shown in section Run a carac that openCarac must be
executed in a folder containing a configuration file; but, it is possible to give as an argument the path to access such a

26

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

configuration file as shown bellow:
If you are using Linux:

tclsh ~/openCarac/tcl/openCarac.tcl simulation/carac.conf

If you are using Windows:

C:\tcl\bin\tclsh.exe C:\openCarac\tcl\openCarac.tcl simulation\carac.conf

These arguments are defined in a vector named argv in TCL. So, in case you are using a TCL interpreter which does not
allow to pass arguments during the loading of an openCarac script file, it is possible to set variable argv before sourcing
the main file. This may look like as shown bellow:

set argv "--ngspice [file join {simulation} {carac.conf}]" ; source openCarac.tcl

The variable argv is in fact a list of arguments separated by spaces: it is then possible to give various arguments to
openCarac at the same time when you are executing it. If more than one configuration file path is given, all the files will be
loaded by openCarac.

More than paths to configuration files, you can also add execution options to change openCarac behaviour. An
execution option is considered as so when starting with either two minus signs (--) and a keyword or one minus sign (-)
and a letter. Note that almost every keyword has its equivalent as a letter, that arguments are case-sensitive and that the
order you pass them is relevant for openCarac. Here is a list of every keyword available and their descriptions:

archive (-a): activates "archives creation mode", creates archives after results extraction, see subsection Archives creation
for more informations.

batch (-b): activates "batch mode"; openCarac main executable does not try to run graphical user interface and exe-
cutes the whole batch sequence: see section In batch mode for more informations.

check (-c): activates "check mode": selects "check options" instead of "run options" when executing the simulator,
see subsection checkOptions for more informations; remove specific directives from the simulator files, see subsection
toRemoveInCheckMode for more informations. Also, number of runnings is reduced: only one running by simulation name
and netlist couple is kept. Such an option permits to anticipate the functionality of a carac without loading every possible
simulations and reducing the execution time.

command (-o): selects a custom command to execute instead of the simulator selected by your openCarac environ-
ment settings, see the description of openCarac environment file in section Add openCarac to your environment for more
informations.

configure (-C): makes openCarac create an environment file defining your settings in your home directory. Also cre-
ates a customProcedures.tcl which you can modify to change openCarac execution behaviour, see chapter Expert
mode for more informations. Path to access the environment file is printed in the standard output and openCarac exits.

custom (-t): activates "custom mode": processes the runnings using a custom procedure defined in the custom←↩
Procedures.tcl file located in your home directory instead of openCarac default commands. See section Custom
procedure for more informations.

debug (-d): activates "debug mode", do not remove temporary folders after processing the runnings. As described in
chapter Execution details, when executing openCarac, it creates temporary folders next to the configuration directory and
removes them after the runnings; this option disables the deletion of such temporary folders.

extractres (-e): activates "extractres mode": do not execute the simulator and only creates output results files from

27

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

data available in the openCaracFiles folder in the configuration directory. Note that data has to be available by having
previously run a carac and that extracted results depend on the configuration. Such an option permits to create results
after having run a carac in various passes.

fullsummary (-f): activates "full summary creation" after archives creation, see subsection Full summary creation for
more informations.

gnucap (-g): selects Gnucap T M simulator instead of the one selected by your openCarac environment settings, see
the description of openCarac environment file in section Add openCarac to your environment for more informations.

help (-h): prints a quick help in the standard output and then exits.

logfile <arg>: this option expects an argument, it has the same effect as the logfile property in the environment
file. Argument <arg> represents the path to this log file; it can be absolute or relative to the location of execution.

multicarac <arg>: this option expects an argument. Instead of passing a list of configuration files as a vector of ar-
guments, it is possible to print all these paths into a text file and use the multicarac option. When using this option,
this file is read by openCarac and all the configuration files having their paths in it are loaded by openCarac. Argument
<arg> represents the path to the file containing the locations of each configuration file; it can be absolute or relative to
the location of execution.

ngspice (-n): selects Ngspice T M simulator instead of the one selected by your openCarac environment settings, see
the description of openCarac environment file in section Add openCarac to your environment for more informations.

nofilescopy (-N): deactivates "files copy" after executing the runnings, this has the same effect as switching filesCopy
environment setting to "no". This might be useful to save disk space in case the simulator files are heavy.

runbysteps (-S): activates "run by step" mode, this has the same effect as switching runBySteps environment setting
to "yes". In this case, when executing one carac, temporary folders are created, runnings are executed, temporary folders
are removed and results are extracted; and so on with other caracs.

smash (-s): selects Smash T M simulator instead of the one selected by your openCarac environment settings, see
the description of openCarac environment file in section Add openCarac to your environment for more informations.

tcl <arg>: evaluates a TCL command after loading the openCarac environement. Note that every openCarac API
function is available here. See openCarac API reference manual for more informations.

xyce (-x): selects Xyce T M simulator instead of the one selected by your openCarac environment settings, see the
description of openCarac environment file in section Add openCarac to your environment for more informations.

6.3 Configuration file syntax

In order to configure the runnings, one has at his disposal what is called a configuration file ; by default, openCarac names
it carac.conf. This file allows to tune the caracs by setting the alterations of corners, params loadings, netlists or
simulations files inclusions. But it also has other characteristics that permit to:

• Run more than one carac for a circuit

• Change the path to access libraries files (for models or libparams)

• Add verifications on measures values.

• Extract devices parameters from your operating point.

• Add verifications on some voltages value at operating point.

28

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.3.1 Global arrangement

Here is a description of configuration files syntax:
Any comment can be added by starting with an hash (#), any text located between an hash and the end of the line is to be
ignored. Configuration files syntax is not case sensitive. Caracs can be tuned using directives starting with a point (.) and
a keyword just like with Spice syntax. Any line can be continued on the next one using character plus (+).

A carac is defined by the values of all directives located between two .CARAC or .CHANGE directives (see the descrip-
tion of these directives for more informations: .CARAC directive and .CHANGE directive), or between the beginning of the
file and the first .CARAC or .CHANGE directive (in this case, your carac name will be set to the default value "myCarac",
but it does not exist if no simulation has been stipulated), or between the last .CARAC or .CHANGE directive and the end
of the file.

When having various caracs defined in the same file, values of directives set in previous ones remain set to the same
value unless they are overloaded. You can overload the value with an empty string by setting the directive alone with no
value if you want reset it.

This is a comment

.CARAC TheFirstCarac

.PARAM TYP

.SIMU op
+ openLoop # This is a comment
+ transient

.CARAC TheSecondCarac

.PARAM SWEEP

Value of .SIMU directive remains the same.

In this configuration example, two caracs are executed: in the first one, library TYP of the libparam file will be loaded; in
the second one, library SWEEP will be loaded; in both of them, three simulations are going to be executed by including re-
spectively files op.inc, openLoop.inc and transient.inc (where .inc is the selected extension for simulation
files).

6.3.2 .CARAC directive

Description:

This directive is used to define the name of a carac and to delimit its description. Unless it is the first one encoun-
tered in the configuration file when no simulation has been stipulated, the previously defined carac is set when this
directive appears. When using this directive, the user chooses the name of his carac using the parameter <name> and
then can change all its settings using any available directive. The carac definition ends when an other .CARAC directive
is encountered or when End Of File is reached. So, a carac is usually defined between two .CARAC directives and the
name of the carac is the one set in the first of these two.

If a setting has been done through an other directive in a previous carac and the same directive is not re-used in the
current carac definition, the previous value is also used for this carac. Indeed this directive does not reset the previous
settings and allows only to define the parameters the user wants to alter: any directive which is re-used permits to overload
the value of the previous one.

If the user wants to reset the value of a carac setting, he may use the same directive used as before with no value at
all.

An alias to this directive is also available: .CHANGE directive, see subsection .CHANGE directive.

Syntax:

29

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

.CARAC <name>

Parameters:

<name> String: defines the name of the carac which is configured after the .CARAC directive.

6.3.3 .CHANGE directive

This directive is an alias to .CARAC directive. See .CARAC description in subsection .CARAC directive for more informa-
tions.

6.3.4 .CHECKMEAS directive

Description:

This directive is used to verify that the measures in the simulations are in accordance to some specifications: it per-
mits to define the name of the measure to check and the minimum and maximum tolerated values. So, when extracting
the results, openCarac will check the conformity of the results and prints them with a format in accordance. For instance,
results will be colorized in green or red into HTML tables or check matrices will be available in GNU Octave T M scripts.

To use this directive, the user must add a triplet of parameters to define respectively the name of the measure, its
minimum and maximum tolerated values. More than one triplet can be defined if there are more than one measure to
check.

Syntax:

.CHECKMEAS <name> <min> <max> [<name> <min> <max>]*

Parameters:

<name> String: defines the name of the measure the user wants to check the value of.
<min> Real: minimum tolerated value for the measure to check.
<max> Real: maximum tolerated value for the measure to check.

Example:

In the following example is shown the definition of a carac where both simulation files op.inc and openLoop.←↩
inc are used and two measures named phi_margin and gain_dc are defined in the files.
It permits to verify that the measured value of phi_margin is higher than 1.0472 and lower than 3.1416 and that
measured value of gain_dc is higher than 60 and lower than 100.

.CARAC myCarac

.SIMU op
+ openLoop # AC analysis where measures to check are defined.

.CHECKMEAS phi_margin 1.0472 3.1416 # 60/180*pi = 1.0472
+ gain_dc 60 100

30

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.3.5 .CHECKOP

directive
Description:

Since openCarac is used to sum up the values of measures and measuring a voltage at operating point is not avail-
able with every simulator, directive .CHECKOP can be defined. When set, this directive makes openCarac parse the
simulator results files looking for voltage values at operating point. Just like when using directive .CHECKMEAS (see
subsection .CHECKMEAS directive), it permits to define the name of the voltage to check the value of and the minimum
and maximum tolerated values. Conformity of the results is checked and are printed with a format in accordance.

To use this directive, the user must add a triplet of parameters to define respectively the name of the net to get the
voltage value of, its minimum and maximum tolerated values. More than one triplet can be defined if there are more than
one voltage value to check.

Syntax:

.CHECKOP <net> <min> <max> [<net> <min> <max>]*

Parameters:

<net> String: defines the name of the net the user wants to check the voltage value of.
<min> Real: minimum tolerated value for the voltage value of the net to check.
<max> Real: maximum tolerated value for the voltage value of the net to check.

Example:

In the following example is shown the definition of a carac where a simulation file op.inc is used and two nets
named IN1 and IN2 are defined in the netlist file.
It permits to extract the voltage values of nets IN1 and IN2 at operating point and verify that the value of the voltage on
net IN1 is higher than 2.25 and lower than 2.75 and that measured value of the voltage on net IN2 is higher than 0 and
lower than 5.

.CARAC myCarac

.SIMU op

.CHECKOP IN1 2.25 2.75
+ IN2 0 5

6.3.6 .CORNER directive

Description:

When running a carac where library loadings from the model file are to be altered, a list of library names to load
has to be specified (see section Organize your Spice circuit files), these library names are called corners. In order to define
the list of corners to load, directive .CORNER has to be used. A list of strings, libraries names, separated by spaces is to
be added to define the corners to load.

Syntax:

.CORNER <name> [<name>]*

31

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

Parameters:

<name> String: defines the name of the library to load.

Example:

In the following example is shown the definition of a carac where simulation file op.inc is used and is simulated in
three corners.

.CARAC myCarac

.SIMU op

.CORNER TYP FAST SLOW

6.3.7 .CUSTOMARGS directive

Description:

The value given to this directive remains unused by openCarac in most situations but it can be accessed by the user
in a hook or a custom procedure to change a behaviour function of a carac. See chapter Expert mode for more
informations.

All the characters printed after this directive form a string to set the custom args to.

Syntax:

.CUSTOMARGS <args>

Parameters:

<args> String: value of the custom args.

6.3.8 .EXTRACTOP directive

Description:

Since openCarac is used to sum up the values of measures and extracting a device parameter at operating point is
not available with every simulator, directive .EXTRACTOP can be defined. When set, this directive makes openCarac
parse the simulator results files looking for devices parameters values at operating point. It permits to define the name of
the simulation the operating point must be get from and the name of the parameters to extract.

If nothing else is done, the given parameter is going to be extracted from every devices available in the simulator output
files and data is printed in the results file just like it was a measure extraction. In order to filter a list of devices to extract
the parameters from, the user can add a devices.list file in the same directory as the configuration file where a list
of devices is defined; if this file is present, parameters will be extracted only from the devices having the same names as
given in this file.

Syntax:

32

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

.EXTRACTOP <simulation> <parameter> [<simulation> <parameter>]*

Parameters:

<simulation> String: name of the simulation to extract the parameter from.
<parameter> String: name of the parameter to extract from the devices.

Note: The simulation name must also be present in the list given to the .SIMU directive as defined in subsection .SIMU
directive .

Example:

In the following example is shown the definition of a carac where three simulations files op.inc, openLoop.inc
and tran.inc are used, parameter VDS will be extracted from devices in results files when simulating with file op.inc
and parameter ID will be extracted from devices in results files when simulating with file openLoop.inc.

.CARAC myCarac

.SIMU op openLoop tran

.EXTRACTOP op VDS
+ openLoop ID

If a filter must be applied on two devices, the following devices.list file can be added in the same directory:

M.XAMP.MDP2
M.XAMP.MDP1

6.3.9 .LIBPARAMLIN directive

Description:

Since openCarac allows to alter the loading of a library for simulation conditions, the user must load a file containing
all the possible libraries. If various library files are available to define different conditions for a circuit, directive .LIBPA←↩
RAMLIN permits to define a Linux T M format path to access an other file containing parameters libraries. In this case, it
becomes possible to change the file containing the parameters libraries to load.

This directive can be completed by the usage of .LIBPARAMWIN which allows to define a Windows T M format path
to access the same file (see subsection .LIBPARAMWIN directive); in this case, the user can define both paths to access
the same file, each of them compatible with respectively Linux T M and Windows T M .

An alias to this directive is also available: .LINLIBPARAM directive, see subsection .LINLIBPARAM directive .

Syntax:

.LIBPARAMLIN <path>

Parameters:

33

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

<path> String: Linux T M format path to access the file containing the parameters libraries to load.

Example:

In the following example is shown the definition of a carac where the file containing the parameters libraries to load
is altered. This works under both Linux T M and Windows T M .

.CARAC myCarac

.LIBPARAMLIN /media/device/folder/conditions.lib

.LIBPARAMWIN E:\folder\conditions.lib

6.3.10 .LIBPARAMWIN directive

Description:

Since openCarac allows to alter the loading of a library for simulation conditions, the user must load a file containing
all the possible libraries. If various library files are available to define different conditions for a circuit, directive .LIBPA←↩
RAMWIN permits to define a Windows T M format path to access an other file containing parameters libraries. In this case,
it becomes possible to change the file containing the parameters libraries to load.

This directive can be completed by the usage of .LIBPARAMLIN which allows to define a Linux T M format path to
access the same file (see subsection .LIBPARAMLIN directive); in this case, the user can define both paths to access the
same file, each of them compatible with respectively Linux T M and Windows T M .

An alias to this directive is also available: .WINLIBPARAM directive, see subsection .WINLIBPARAM directive.

Syntax:

.LIBPARAMWIN <path>

Parameters:

<path> String: Windows T M format path to access the file containing the parameters libraries to load.

Example:

In the following example is shown the definition of a carac where the file containing the parameters libraries to load
is altered. This works under both Linux T M and Windows T M .

.CARAC myCarac

.LIBPARAMWIN E:\folder\conditions.lib

.LIBPARAMLIN /media/device/folder/conditions.lib

6.3.11 .LINLIBPARAM directive

This directive is an alias to .LIBPARAMLIN directive. See .LIBPARAMLIN description in subsection .LIBPARAMLIN
directive for more informations.

34

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.3.12 .LINMODEL directive

This directive is an alias to .MODELLIN directive. See .MODELLIN description in subsection .MODELLIN directive for
more informations.

6.3.13 .MODELLIN directive

Description:

Since openCarac allows to alter the loading of a library for corners definitions, the user must load a file containing
all the possible corner libraries. If various library files are available to define different models for the devices, directive
.MODELLIN permits to define a Linux T M format path to access an other file containing corners libraries. In this case, it
becomes possible to change the file containing the corner libraries to load.

This directive can be completed by the usage of .MODELWIN which allows to define a Windows T M format path to
access the same file (see subsection .MODELWIN directive); in this case, the user can define both paths to access the
same file, each of them compatible with respectively Linux T M and Windows T M .

An alias to this directive is also available: .LINMODEL directive, see subsection .LINMODEL directive.

Syntax:

.MODELLIN <path>

Parameters:

<path> String: Linux T M format path to access the file containing the models libraries to load.

Example:

In the following example is shown the definition of a carac where the file containing the models libraries to load is al-
tered. This works under both Linux T M and Windows T M .

.CARAC myCarac

.MODELLIN /media/device/folder/models.lib

.MODELWIN E:\folder\models.lib

6.3.14 .MODELWIN directive

Description:

Since openCarac allows to alter the loading of a library for corners definitions, the user must load a file containing
all the possible corner libraries. If various library files are available to define different models for the devices, directive
.MODELWIN permits to define a Windows T M format path to access an other file containing corners libraries. In this case,
it becomes possible to change the file containing the corner libraries to load.

This directive can be completed by the usage of .MODELLIN which allows to define a Linux T M format path to access
the same file (see subsection .MODELLIN directive); in this case, the user can define both paths to access the same file,
each of them compatible with respectively Linux T M and Windows T M .

An alias to this directive is also available: .WINMODEL directive, see subsection .WINMODEL directive.

Syntax:

35

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

.MODELWIN <path>

Parameters:

<path> String: Windows T M format path to access the file containing the models libraries to load.

Example:

In the following example is shown the definition of a carac where the file containing the models libraries to load is al-
tered. This works under both Linux T M and Windows T M .

.CARAC myCarac

.MODELWIN E:\folder\models.lib

.MODELLIN /media/device/folder/models.lib

6.3.15 .NETLIST directive

Description:

Sometimes, it can be useful to run the same simulations with different netlists and duplicate all the files cannot be
the best way to do so. A solution to re-use the simulations files is offered by openCarac: if the user gets the part of the
circuits he wants to alter in a separated file with the netlist extension, it can be altered when executing the carac as soon
as an inclusion of a netlist file is available in the main control file.

To do so, .NETLIST directive permits to define a list of netlist file names which will be loaded during the carac. Note
that only one occurrence of netlist file inclusion must be available in the main file when executing the carac. A netlist file is
identified by openCarac through its extension.

Syntax:

.NETLIST <name> [<name>]*

Parameters:

<name> String: defines the name of the netlist file to include.

Example:

In the following example is shown the definition of a carac where both file nampli.nsx and pampli.nsx will be
alternatively included in the main control file, where .nsx is the netlist file extension.

.CARAC myCarac

.NETLIST nampli pampli

36

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.3.16 .PARAM directive

Description:

When running a carac where library loadings from the libparam file are to be altered, a list of library names to load
has to be specified (see section Organize your Spice circuit files), these library names are called params. In order to define
the list of params to load, directive .PARAM has to be used. A list of strings, libraries names, separated by spaces is to be
added to define the params to load.

Syntax:

.PARAM <name> [<name>]*

Parameters:

<name> String: defines the name of the library to load.

Example:

In the following example is shown the definition of a carac where simulation file op.inc is used and is simulated
with two params libraries.

.CARAC myCarac

.SIMU op

.PARAM TYP SWEEP

6.3.17 .PARAMETERS directive

This directive is an alias to .PARAM directive. See .PARAM description in subsection .PARAM directive for more informa-
tions.

6.3.18 .RESET directive

Description:

When configuring various caracs using .CARAC directive as described in subsection .CARAC directive, the user only
needs to re-define what he wants to alter: the settings of every directive remain identical if not set again. If a directive must
be set to its default value, it is possible to set this directive with no parameter: having an empty string is interpreted as the
directive has never been set.

Sometimes, the carac settings may be so different as the previous one that every directives have to be reset; in such a
case, it becomes possible to use .RESET directive. This makes every directive except .CARAC placed before reset to its
default value.

Syntax:

.RESET

Parameters:

37

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

This directive is used with no parameter.

Example:

In the following example is shown the configuration of four caracs where:

• In the first carac, a simulation file op.inc is included and measure "myMeas" is checked.

• In the second carac, a simulation file transient.inc is included and measure "myMeas" is also checked.

• In the third carac, .CHECKMEAS directive is reset and simulation file openLoop.inc is included with no measure
checked.

• In the fourth carac, nothing is done because .RESET directive also resets the .SIMU directive placed before.

.CARAC firstCarac

.SIMU op

.CHECKMEAS myMeas 0 1

.CARAC secondCarac

.SIMU transient

.CARAC thirdCarac

.RESET

.SIMU openLoop

.CARAC fourthCarac

.SIMU op

.RESET

6.3.19 .SIMU directive

Description:

When running a carac where various simulations have to be run, the user must separate the simulations definitions
in various files with the appropriate extension, default value for this extension is .inc (see section Organize your Spice
circuit files). So, to define the list of simulations to run, directive .SIMU has to be used and a list of strings, names of files
with the appropriate extension, separated by spaces has to be added to define the files where the simulations to include
are configured.

Also, since it can be useful to modify the values of parameters, the user can make each simulation name being followed
by couples of parameters name and value defined between parentheses. What is defined in a field delimited by parentheses
will determine the parameters to alter when running the simulation once, various couples can be defined to make various
parameters vary. If the user wants to run various times the same simulation when altering the parameters with other values
or other parameters, others fields delimited by parameters can be defined.

Each time, the first string is considered as the name of the simulation and what is defined between the parentheses
is considered as a parameters setting. If various parameters settings are described after a simulation name, the same
simulation name is considered and the simulation will be run various times.

Syntax:

.SIMU <name> [(<paramName> <paramValue> [<paramName> <paramValue>]*)]*
+ [<name> [(<paramName> <paramValue> [<paramName> <paramValue>]*)]*]*

Parameters:

38

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

<name> String: defines the name of the file with the simulation extension to include.
<paramName> String: defines the name of the parameter to alter.
<paramValue> String: defines the value to give to the parameter.

Example:

In the following example is shown the definition of a carac where four simulations op, openLoop, transient
and noise are used by including respectively files op.inc, openLoop.inc, transient.inc and noise.inc,
where .inc is the simulation files extension.

Simulation openLoop will run twice, the first time when altering both parameters "millerValue" and "loadValue" to
respectively 20 f and 10k; and the second time when altering parameter "millerValue" to 35 f and by keeping originally
defined value of parameter "loadValue". Other simulations will run once with no parameter alteration.

.CARAC myCarac

.SIMU op
+ openLoop (millerValue 20f loadValue 10k) (millerValue 35f)
+ transient noise

6.3.20 .SIMULATIONS directive

This directive is an alias to .SIMU directive. See .SIMU description in subsection .SIMU directive for more informations.

6.3.21 .SIMULATOR directive

Description:

In case a carac can be run only with a specific simulator, directive .SIMULATOR can be used to force the selection
of the simulator to run the carac with. Its effect is to overload the simulator selection that may have been done through
openCarac environment settings or execution options. See subsection Simulators sections for the list of the compatible
simulators.

If the specified simulator is not supported by openCarac, an error message is printed and the directive remains ignored.

Syntax:

.SIMULATOR <name>

Parameters:

<name> String: defines the name of the simulator to select.

Example:

In the following example is shown the definition of a carac where simulator Ngspice is selected and simulation op
will run in three corners.

.CARAC myCarac

.SIMULATOR NGSPICE

.SIMU op

.CORNER TYP FAST SLOW

39

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

6.3.22 .WINLIBPARAM directive

This directive is an alias to .LIBPARAMWIN directive. See .LIBPARAMWIN description in subsection .LIBPARAMWIN
directive for more informations.

6.3.23 .WINMODEL directive

This directive is an alias to .MODELWIN directive. See .MODELWIN description in subsection .MODELWIN directive for
more informations.

40

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

Chapter 7

Expert mode

Abstract: In this chapter are described the procedures to follow in order to extend openCarac capabilities for users that
are familiar with TCL/Tk and any other language. Section Use of a custom simulator lists what the user should be aware
of when using a custom command instead of the the simulator, section Custom procedure gives guidelines for editing the
custom procedure and section Hooks details how to benefits the use of the hooks.

7.1 Use of a custom simulator

As introduced in chapter Simulator specificities, openCarac comes with the possibility to use a custom command instead
of a native Spice simulator. Such a command can be any program from a non-native Spice simulator to a shell interpreter
or a digital simulator. openCarac behaviour remains identical but, to ensure that its execution through openCarac does not
bring any surprise, the following guidelines must be followed:

First, make sure that the presence of markers in the main file does not alter the command execution by making them
starting with a comment syntax (see subsections modelMarker, paramMarker and simuMarker for more informations).

Then, be aware that openCarac does not include any files parser when using a custom command. As a consequence,
in order to proceed to a results extraction, the user has to create his own parsers. An example to do so is given in an
openCarac API example.

7.2 Custom procedure

openCarac application has a boolean property that defines if "custom execution mode" is activated (as described in sub-
section Section application), when such a mode is activated, the execution of the simulator differs from what is described in
section Execution of the simulator. Indeed, execution of the simulator is done through the openCarac_customRun←↩
Simulator procedure that is defined in the customProcedures.tcl file in the openCarac environment files folder
located in the user home directory.

Such a file is created when executing openCarac main executable with the --configure option as shown in
subsection Define your simulation environment. The default file is also available in the same directory as openCarac main
executable: when executing openCarac main executable, the default file is loaded and, when the environment is loaded, a
source of the user customProcedures.tcl file occurs and any procedure defined in it overloads the previous one.

The execution of the simulator through openCarac in "custom mode" is performed as defined in the openCarac_←↩
customRunSimulator procedure. A documentation of the default behaviour of this procedure is given in openCarac
API reference manual.

It is then possible for the user to modify the definition of this openCarac_customRunSimulator procedure to
alter openCarac behaviour. To do so, in addition to TCL functions, openCarac provides API functions that are described
in the API reference manual. These API functions can be used as soon as openCarac is running, including in the custom
procedure and the hooks.

API functions to access the caracs "custom args" attribute are provided (see the documentation of function open←↩
Carac_caracGetCustomArgs in openCarac API reference manual for more informations) so that the custom proce-
dure can provide a different behaviour function of the carac.

41

OPENCARAC USER MANUALOPENCARAC USER MANUALOPENCARAC USER MANUAL

7.3 Hooks

In addition to the custom procedure, in the customProcedures.tcl file, openCarac comes with hooks: these proce-
dures remain empty by default but can be modified in order to execute some code at a given instant in openCarac execution.
The hooks are executed before or after executing the main code of an openCarac API function, see the openCarac API
reference manual to know the instant when the hooks are executed.

Since openCarac main executable uses API function, what is executed in the hooks is also executed in the main
executable: modifying the hooks permit to alter openCarac main executable behaviour as well.

openCarac comes with API examples where hooks are modified to fit a particular purpose, please refer to their respec-
tive documentations for a detailed description.

42

This manual has been generated by Doxygen

http://www.doxygen.org/index.html

	Introduction
	Brief description
	openCarac output files
	Glossary
	FAQ
	Where does the name `¨openCarac`¨ come from?
	Can openCarac be natively compatible with other Spice simulators?
	Why openCarac has been coded with TCL?
	Does openCarac come with a Graphical User Interface
	Why is there a duck printed in my result files?

	Your first carac
	Add openCarac to your environment
	Run openCarac:
	Define your simulation environment

	Organize your Spice circuit files
	Run a carac

	Execution details
	Overview
	Native functions
	Archives creation
	Full summary creation

	In batch mode
	Through the graphical user interface

	Files alteration
	Overview
	Creation of temporary folders
	Simulator files syntax

	Substitution after a marker
	Replacing netlist inclusion
	Substitution of parameters
	Add parameters settings
	Comment of possible inclusions
	Check mode

	Simulator specificities
	Execution of the simulator
	Saving the results
	Gnucap files parser
	Ngspice files parser
	Xyce files parser
	Smash files parser
	User defined command

	openCarac usage
	Environment file syntax
	Section application
	Simulators sections

	Execution options
	Configuration file syntax
	Global arrangement
	.CARAC directive
	.CHANGE directive
	.CHECKMEAS directive
	.CHECKOP
	.CORNER directive
	.CUSTOMARGS directive
	.EXTRACTOP directive
	.LIBPARAMLIN directive
	.LIBPARAMWIN directive
	.LINLIBPARAM directive
	.LINMODEL directive
	.MODELLIN directive
	.MODELWIN directive
	.NETLIST directive
	.PARAM directive
	.PARAMETERS directive
	.RESET directive
	.SIMU directive
	.SIMULATIONS directive
	.SIMULATOR directive
	.WINLIBPARAM directive
	.WINMODEL directive

	Expert mode
	Use of a custom simulator
	Custom procedure
	Hooks

